Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Basic Res Cardiol ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491291

RESUMEN

Though myocardial infarction (MI) in pigs is a well-established translational large animal model, it has not yet been widely used for immunotherapy studies, and a comprehensive description of the immune response to MI in this species is lacking. We induced MI in Landrace pigs by balloon occlusion of the left anterior descending artery over 90 min. Within 14 days, the necrotic myocardium was progressively replaced by scar tissue with involvement of myofibroblasts. We characterized the immune response in the heart ex vivo by (immuno)histology, flow cytometry, and RNA sequencing of myocardial tissue on days 3, 7, and 14 after MI. Besides a clear predominance of myeloid cells among heart-infiltrating leukocytes, we detected activated T cells and an increasing proportion of CD4+ Foxp3+ regulatory T cells (Treg), especially in the infarct core-findings that closely mirror what has been observed in mice and humans after MI. Transcriptome data indicated inflammatory activity that was persistent but markedly changing in character over time and linked to extracellular matrix biology. Analysis of lymphocytes in heart-draining lymph nodes revealed significantly higher proliferation rates of T helper cell subsets, including Treg on day 7 after MI, compared to sham controls. Elevated frequencies of myeloid progenitors in the spleen suggest that it might be a site of emergency myelopoiesis after MI in pigs, as previously shown in mice. We thus provide a first description of the immune response to MI in pigs, and our results can aid future research using the species for preclinical immunotherapy studies.

2.
J Clin Invest ; 131(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34196299

RESUMEN

The inflammatory response after myocardial infarction (MI) is a precisely regulated process that greatly affects subsequent remodeling. Here, we show that basophil granulocytes infiltrated infarcted murine hearts, with a peak occurring between days 3 and 7. Antibody-mediated and genetic depletion of basophils deteriorated cardiac function and resulted in enhanced scar thinning after MI. Mechanistically, we found that basophil depletion was associated with a shift from reparative Ly6Clo macrophages toward increased numbers of inflammatory Ly6Chi monocytes in the infarcted myocardium. Restoration of basophils in basophil-deficient mice by adoptive transfer reversed this proinflammatory phenotype. Cellular alterations in the absence of basophils were accompanied by lower cardiac levels of IL-4 and IL-13, two major cytokines secreted by basophils. Mice with basophil-specific IL-4/IL-13 deficiency exhibited a similarly altered myeloid response with an increased fraction of Ly6Chi monocytes and aggravated cardiac function after MI. In contrast, IL-4 induction in basophils via administration of the glycoprotein IPSE/α-1 led to improved post-MI healing. These results in mice were corroborated by the finding that initially low counts of blood basophils in patients with acute MI were associated with a worse cardiac outcome after 1 year, characterized by a larger scar size. In conclusion, we show that basophils promoted tissue repair after MI by increasing cardiac IL-4 and IL-13 levels.


Asunto(s)
Basófilos/inmunología , Interleucina-13/inmunología , Interleucina-4/inmunología , Infarto del Miocardio/inmunología , Animales , Basófilos/patología , Basófilos/fisiología , Modelos Animales de Enfermedad , Humanos , Interleucina-13/deficiencia , Interleucina-13/genética , Interleucina-4/deficiencia , Interleucina-4/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Infarto del Miocardio con Elevación del ST/inmunología , Infarto del Miocardio con Elevación del ST/patología , Infarto del Miocardio con Elevación del ST/fisiopatología
4.
Circulation ; 141(20): 1628-1644, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32100557

RESUMEN

BACKGROUND: Acute occlusion of a coronary artery results in swift tissue necrosis. Bordering areas of the infarcted myocardium can also experience impaired blood supply and reduced oxygen delivery, leading to altered metabolic and mechanical processes. Although transcriptional changes in hypoxic cardiomyocytes are well studied, little is known about the proteins that are actively secreted from these cells. METHODS: We established a novel secretome analysis of cardiomyocytes by combining stable isotope labeling and click chemistry with subsequent mass spectrometry analysis. Further functional validation experiments included ELISA measurement of human samples, murine left anterior descending coronary artery ligation, and adeno-associated virus 9-mediated in vivo overexpression in mice. RESULTS: The presented approach is feasible for analysis of the secretome of primary cardiomyocytes without serum starvation. A total of 1026 proteins were identified to be secreted within 24 hours, indicating a 5-fold increase in detection compared with former approaches. Among them, a variety of proteins have not yet been explored in the context of cardiovascular pathologies. One of the secreted factors most strongly upregulated upon hypoxia was PCSK6 (proprotein convertase subtilisin/kexin type 6). Validation experiments revealed an increase of PCSK6 on mRNA and protein level in hypoxic cardiomyocytes. PCSK6 expression was elevated in hearts of mice after 3 days of ligation of the left anterior descending artery, a finding confirmed by immunohistochemistry. ELISA measurements in human serum also indicate distinct kinetics for PCSK6 in patients with acute myocardial infarction, with a peak on postinfarction day 3. Transfer of PCSK6-depleted cardiomyocyte secretome resulted in decreased expression of collagen I and III in fibroblasts compared with control treated cells, and small interfering RNA-mediated knockdown of PCSK6 in cardiomyocytes impacted transforming growth factor-ß activation and SMAD3 (mothers against decapentaplegic homolog 3) translocation in fibroblasts. An adeno-associated virus 9-mediated, cardiomyocyte-specific overexpression of PCSK6 in mice resulted in increased collagen expression and cardiac fibrosis, as well as decreased left ventricular function, after myocardial infarction. CONCLUSIONS: A novel mass spectrometry-based approach allows investigation of the secretome of primary cardiomyocytes. Analysis of hypoxia-induced secretion led to the identification of PCSK6 as being crucially involved in cardiac remodeling after acute myocardial infarction.


Asunto(s)
Infarto del Miocardio/enzimología , Miocitos Cardíacos/enzimología , Proproteína Convertasa 9/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Animales Recién Nacidos , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Proproteína Convertasa 9/genética , Proteoma , Ratas Wistar , Vías Secretoras , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...